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EFFICIENT METHOD FOR MEMORY
ACCESSES IN A MULTI-CORE PROCESSOR

BACKGROUND OF THE INVENTION

The present application relates to high-performance multi-
purpose computer processors, and in particular, to processors
that include internal memory controllers that control accesses
to external memory chips.

The number of processor cores in a multi-core processor
has increased rapidly in recent years. The computing perfor-
mance of the multi-core processors is becoming increasingly
limited by the bandwidths of the multi-core processors’
accesses to external memory chips. Let P denotes the overall
bandwidth (in GB/s) of data and address pins of the chip, D be
the data bandwidth (in GB/s), and A be the bandwidth of
address information (in GB/s), we have P=D+A. Given a
fixed total number of data and address pins (i.e. constant P)
and a clock rate, the D-to-A ratio is fixed in conventional
processor architectures.

In some designs, data and address buses (and pins) are
separated. If there is only a single memory controller, most
pins are used for transferring data, and D is almost equal to P.
For example, if there are 256 data pins connected to DDR3
chips (with consecutive data transmissions of burst length 8),
the ideal granularity of memory accesses is 256 Bytes.
Shorter memory accesses will not fully utilize the bandwidth.
Most applications in cloud computing and transaction-pro-
cessing use 4~8 bytes (integers and floats) per operation. For
a computing task with mostly 8-byte accesses, data utilization
is only 3% for such a single memory controller configuration.

Adding memory controllers with independent address
buses decreases the above described memory-access granu-
larity, requires more address pins, and reduces the data band-
width D. The D-to-A ratio remains fixed. For example, 32
memory controllers are needed to reduce 256-byte granular-
ity to 8 bytes per memory channel. Addressing GB-scale
memory requires up to 32 bits for addressing. Theoretical
limit for D is 67% of P (64 bits/(64 bits+32 bits)=67%). In
reality, when the timing for addressing in typical DDR3 is
considered, the actual data bandwidth D for computing tasks
is below 50%.

In another design that is commonly seen in low-end pro-
cessors in embedded systems, data and address buses are
shared and reused alternately for data or addressing purposes
over time. This type of processors has the benefit of simple
packaging configuration with the total pin count close to the
number needed for addressing only. However, since the
D-to-A ratio is also fixed, this type of design has the same
drawbacks as the previously described designs; it also cannot
provide both addressing and data performances.

Other techniques have attempted to enhance the utilization
of bandwidth by exploiting data locality, but have only
achieved limited improvements. These techniques assume the
conditions of fixed memory access granularity and constant
D/A ratio. They depend on cache hierarchies to store per-
fected or to-be-reloaded data. However, cache is not scalable
in multi-core processors: more processor cores in a multi-
core processor results in smaller cache per processor core,
which decreases hit rate. Moreover, during the short span of a
cache, it is unlikely that the cache line acquired by one pro-
cessor core happen to be requested by another processor core.
As a result, caching becomes less effective when the number
of processor cores is increased. In General Purpose Graphics
Processing Unit (GPGPU), every 32 threads are grouped into
a warp unit to execute vector instructions in a Single-Instruc-
tion Multi Data (SIMD). It enables, within a single task,
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alternate accesses to different memory addresses among mul-
tiple threads, without explicit data exchanges among threads
in source codes, thus simplifying programming. But this
approach is only effective for large data blocks each associ-
ated with continuous addresses (for GPGPU, 32 bytes typi-
cally). In practice, many processing tasks have data blocks
less than 8 bytes with distributed memory addresses, which
leads to very low data bus utilization. Consequently, although
GPGPU technology can rarely double the performance of
graphic computing (such as finding the shortest path between
two points), even if it can speed up scientific computing by
tens of times. In conclusion, if the D/A ratio is high at the
processor-memory interface, data exchange within the multi-
core processor can enhance data utilization and simplify cod-
ing, but cannot solve the problem of low memory bandwidth
utilization in the presence of distributed access patterns.

There is therefore an urgent need for improving computing
performance of multi-core processors in different types of
computation applications.

SUMMARY OF THE INVENTION

The presently disclosed methods can significantly improve
bandwidth utilization and increase computation perfor-
mances in multi-core processors by adaptively configuring
the data and address functions of processor pins and buses
according to memory access granularity and the types of
computation at hand. The disclosed methods also simplify
program coding. By transferring only targeted words each
time, the presently disclosed methods eliminate the needs for
explicit data exchanges between processor cores. The dis-
closed methods are compatible with different multiplexer
circuit designs between a multi-core processor and the
memory chip(s). More importantly, contrary to cache, the
presently disclosed methods are scalable with the scaling of
processor cores in a chip.

In one general aspect, the present invention relates to a
method of providing memory accesses for a multi-core pro-
cessor. The method includes reserving a group of pins of a
multi-core processor to transmit either data or address infor-
mation in communication with one or more memory chips,
wherein the multi-core processor comprises a plurality of
processor cores; receiving memory access requests from the
plurality of processor cores; determining granularity of the
memory access requests by a memory controller; and
dynamically adjusting, by the memory controller, a number
of pins in the group of pins to be used to transmit address
information based with the granularity of the memory access
requests.

Implementations of the system may include one or more of
the following. The step of adjusting can include decreasing
the number of pins in the group of pins to be used to transmit
address information by the memory controller when the
granularity of the memory access requests increases. The
memory access requests can be characterized as coarse-
grained memory access requests if the memory access
requests have data width equal or more than a predetermined
data width, wherein the step of adjusting can include mini-
mizing the number of pins in the group of pins to be used to
transmit address information by the memory controller. The
predetermined data width can be 32 bytes. The step of adjust-
ing can include increasing the number of pins in the group of
pins to be used to transmit address information by the
memory controller when the granularity of the memory
access requests decreases. The memory access requests can
be characterized as fine-grained memory access requests if
the memory access requests have data width equal or nar-
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rower than a predetermined data width, wherein the step of
adjusting comprises maximizing the number of pins in the
group of pins to be used to transmit address information by
the memory controller. The predetermined data width can be
8 bytes. The method can further include bundling a plurality
of fine-grained memory access requests having a same target
memory address to form bundled fine-grained memory
access requests; transmitting the target memory address via a
set of pins in the group of pins in one or more address clock
cycles; and after the step of transmitting the target memory
address, transmitting data in the plurality of fine-grained
memory access requests via the same set of pins in one or
more data clock cycles following the one or more address
clock cycles. The method can further include transmitting the
target memory address in the one or more address clock
cycles from the memory controller to a data multiplexer;
controlling the data multiplexer by the memory controller to
direct the target memory address to store in a latch; transmit-
ting the target memory address from the latch to an address
de-multiplexer; transmitting the target memory address from
the address de-multiplexer to address input in the one or more
memory chips; transmitting data in the fine-grained memory
access requests to the data multiplexer; controlling the data
multiplexer by the memory controller to direct the data in the
fine-grained memory access requests to the memory chips
following the one or more address clock cycles. The target
memory address can be transmitted to the address input in the
one or more memory chips one or more clock cycles after the
target memory address is transmitted from the data de-mul-
tiplexer to the memory chips. The method can further include
transmitting the target memory address in the one or more
address clock cycles from the memory controller to a data
multiplexer; controlling the data multiplexer by the memory
controller to direct the target memory address to an address
de-multiplexer; transmitting the target memory address from
the address de-multiplexer to address input in the one or more
memory chips; inserting one or more idle cycles after the one
or more address clock cycles; transmitting data in the fine-
grained memory access requests to the data multiplexer; con-
trolling the data multiplexer by the memory controller to
direct the data in the fine-grained memory access requests to
the memory chips following the one or more idle clock cycles.
The method can further include forming queues of memory
access requests each associated with accessing data in one of
the memory chips; bundling memory access requests in dif-
ferent queues that share same target addresses in two or more
memory chips, which produces bundled memory access
requests; simultaneously transmitting the memory addresses
to the two or more memory chips associated with the bundled
memory access requests; and after the step of simultaneously
transmitting the memory addresses, simultaneously transmit-
ting data in the bundled memory access requests to the respec-
tive memory chips at the memory address. The one or more
memory chips can be outside of the multi-core processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a timing diagram of consecutive reads in a
conventional peripheral multiplexer circuit including a latch
between a memory controller and one or more memory chips.

FIG. 1B is a timing diagram of consecutive reads with fine
granularity in a peripheral multiplexer circuit including a
latch between a memory controller and one or more memory
chips in accordance with the present invention.
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FIG. 2 is a system diagram for a peripheral multiplexer
circuit for communications between a memory controller and
one or more memory chips in accordance with the present
invention.

FIG. 3 is a timing diagram illustrating consecutively
inserted addresses relative to system clock cycles in accor-
dance with the present invention.

FIG. 4A is a timing diagram of consecutive reads in a
conventional peripheral multiplexer circuit without a latch
between a memory controller and one or more memory chips.

FIG. 4B is a timing diagram of consecutive reads with fine
granularity in a peripheral multiplexer circuit without a latch
between a memory controller and one or more memory chips
in accordance with the present invention.

FIG. 5 is another system diagram for a peripheral multi-
plexer circuit for communications between a memory con-
troller and one or more memory chips in accordance with the
present invention.

FIG. 6 is a schematic diagram for splicing memory
accesses having a medium granularity.

FIG. 7 illustrates a peripheral multiplexer circuit including
a memory manager for communications between a memory
controller and one or more memory chips in relation to FIG.
6.

DETAILED DESCRIPTION OF THE INVENTION

Coarse-grained and fine-grain memory accesses are
defined by relative sizes of the data widths. For example,
coarse-grained memory accesses can involve data width
greater than 32 bytes, while fine-grained memory accesses
can have data width less than or equal to 8 bytes. The dis-
closed methods adaptively adjust shared address and data
pins in multi-core processors according to the ratio of data
and address flows. The disclosed multi-core processors can
adaptively reduce address flow when the computation pro-
grams mainly involve coarse-grained memory accesses, and
can increase address flow when the computation programs
include fine-grained memory accesses.

The disclosed methods dynamically assigns pins with data
or address functions according to the needs of computation
program during runtime, which achieves high effective band-
width utilizations in both coarse-grained accesses such as
scientific computing applications, and find-grained accesses
such as cloud computing or transaction-processing applica-
tions.

In the present disclosure, the term “processor core” refers
to the smallest hardware unit in a multi-core processor that
can process independent instructions in an instruction pipe-
line. The term “memory chip” refers to one or more banks of
memory units outside of a processor core. A memory chip
includes control logics for the columns and rows of memory
units. The one or more banks of memory units share the same
set of pins in communication with the processor core. The
term “memory controller” refers to a circuit for controlling
data streams that flow in and out of the memory chip. A
memory controller also interprets address information issued
by the processor core, buffers and adjusts memory access
commands from the processor core(s), and issues read/write
commands to a memory chip. The memory controller typi-
cally resides in the multi-core processor. The term “memory
access” refers to the commands issued by the memory con-
troller in the multi-core processor to read from or write to the
external memory chip.

In some embodiments, the disclosed methods divide
address and data pins of the processor-memory interface into
several groups, each group of pins can perform data transfer
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or issue address information at any given clock cycle. The
memory controller buffers memory requests from different
processor cores in queues, aligns the memory requests to
specific pins, and aggregates multiple memory access
requests into bundled memory access requests in accordance
with the pin groups. Since multiple memory accesses may be
related to different addresses in a memory chip, the memory
controller issues addresses to the shared pins in address cycles
inserted before the respective memory access commands in
the memory access sequence. At each cycle, the memory
controller determines whether the address pins or the data
pins of the memory chips are connected to the shared pins of
the processor, and switch between address and data transfers
accordingly. The memory controller is also responsible for
decomposing the data retrieved from the memory chip, and
sending them back to corresponding processor cores accord-
ing their requests.

In the disclosed methods, when the processor cores request
mainly coarse-grained memory accesses, the memory
accesses are not aggregated, and the shared pins rarely trans-
fer address information. The bandwidth utilization is similar
to that of single memory controller with coarse-grained
accesses. If the processor cores requests mostly fine-grained
memory accesses at distributed memory addresses, address
cycles are inserted into the command sequence and the band-
width utilization is similar to that of multiple memory con-
trollers with fine-grained accesses. The disclosed methods
can therefore adaptively adjust the ratio of data transfer rate
and address issue rate.

The disclosed methods can include one or more of the
following steps:

1) The memory controller in the multi-core processor buff-
ers memory requests from different processor cores in queues
specific to different shared pins, and aggregates multiple
memory accesses into a bundle.

2) The memory controller needs to issue multiple
addresses through these shared pins ahead of time, i.e. insert-
ing address cycles in the originally consecutive memory
access commands.

3) The processor determines whether the address pins or
the data pins of the memory chips are connected to the shared
pins of the processor, and accordingly switches between
address information issuing and data transferring.

4) The retrieved data is decomposed and returned to cor-
responding processor cores.

In some embodiments, in a first method, the internal struc-
ture and timing constraints of the memory chips (e.g. DDR3)
are preserved. At every cycle, the memory controller dynami-
cally switches between a single-issue coarse-grained mode
and a multi-issue fine-grained mode according to the granu-
larity of the memory access requests.

1. The memory controller inside processor groups every 8
pins into a pin group, which corresponds to a memory chip.
For example, the minimum granularity is set to be 8 bytes for
DDR3 memory chips that has a fixed burst length of 8.

a) Queue for coarse-grained memory requests

The memory controller sets up an independent queue for

coarse-grained memory requests, for example, those
with memory access granularity equal or greater than 32
bytes. Their addresses are issued through specialized
pins intended for addresses like the existing system.

b) Queues for fine-grained memory accesses

The memory controller sets up a queue for each pin. The

memory controller aggregates fine-grained memory
accesses into bundled memory accesses.
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¢) Memory accesses with moderate granularity

In some embodiments, memory accesses having moderate
granularity between the fine-grained and coarse-grained
memory accesses (e.g. greater than 8 bytes but smaller
than 32 bytes) can decomposed into multiple fine-
grained accesses with granularity at 8 bytes.

d) Memory Commands

The memory controller alternately selects coarse-grained

accesses and fine-grained accesses, and issues corre-
sponding commands to the memory chip.

2. At any given cycle, the shared pins and buses are only
used as either for data or for address transfers. An originally
consecutive data transfer may be appended by additional
address cycles to allow memory access requests to be
inserted.

FIG. 1A shows a timing diagram for multiple consecutive
reads in a conventional peripheral multiplexer circuit includ-
ing a latch between a memory controller and a memory chip.
ABUS refers to the address bus between the memory control-
ler and the memory chip(s). DBUS denotes the data bus. CL.
is the latency between column selection and data transfer.
FIG. 1B shows a timing diagram of multiple consecutive
reads with in the presently disclosed methods. ABUS repre-
sents the address bus of memory chips. DA BUS denotes the
shared bus. The shared bus latches the inserted address at the
inserted address cycles, and issues the latched address at the
next two system cycles.

In some embodiments, referring to FIG. 1B which shows a
timing diagram of consecutive reads with fine granularity in a
peripheral multiplexer circuit including a latch, the row selec-
tion signal of the (i+1)-th access and the column selection
signal of the (i-1)-th access are set at neighboring cycles,
stored by the latch, and issued approximately two cycle later
onto mABUS from the latch to the address pins of the corre-
sponding memory chips.

The switches between read and write cycles in DDR3
include latencies and time skews of rising and falling edges
between the memory controller and the memory chips. There-
fore, the trigger edges of the input of the latch should align
with the current data bus edges at the inserted two address
cycles, while the output edges should align with the edges of
the address bus of the memory chips.

3. The processor determines whether the address pins or
the data pins of the memory chips are connected to the shared
pins of the processor, and accordingly switches between issu-
ing address and data from the processor.

The data pins and address pins are shared, in contrast to
data pins and address pins assigned with distinctly separate
tasks in conventional system. One or more peripheral latches
and (de-)multiplexers are implemented between the memory
chips and the memory controller. The existing address bus is
preserved for coarse-grained accesses. For bundled memory
access requests aggregated from fine-grained accesses, dif-
ferent addresses are issued for different groups of pins and
store the addresses in latches, which are subsequently sent to
corresponding memory chips in accordance with the timing
diagram above. Extra control signals are required to manage
the (de-)multiplexers.

Referring to FIG. 2, a peripheral logic circuit 200 includes
a data multiplexer 220, an address de-multiplexer 240, and a
latch 230 for controlling memory accesses between a
memory controller 210 and one or more memory chip(s) 250.
The memory controller 210 and the data multiplexer 220 are
connected via a data bus DA BUS. The data multiplexer 220
has an input Din connected to DA BUS, an output pin Dout_a
connected to the input of the latch 230, and another output
Dout_b connected to the data pins of memory chip(s) 250.
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The latch 230 is connected to an input Din_b of the address
de-multiplexer 240. The address de-multiplexer 240 has
another input Din_a connected to the memory controller 210
via address bus ABUS. The address de-multiplexer 240 has
output Dout connected to the address pins of the memory
chip(s) 250 via mABUS. The memory controller 210 can
issue additional select signal D_SEL to the data multiplexer
220 and select signal A_SEL to the address de-multiplexer
240.

The memory controller 210 is typically in a multi-core
processor (not shown). The memory chip(s) 250 are outside
of the multi-core processor (not shown). In some embodi-
ments, the peripheral circuit can be integrated within the
memory chips.

When the memory chips 250 issues coarse-grained
requests in addressing cycles via the address bus ABUS,
D_SEL switches the data multiplexer 220 to Dout_b, there-
fore bypassing the latch 230. A_SEL selects Din_a in the
address de-multiplexer 240, which connects the address bus
ABUS to the memory chips 250 via mABUS (also bypassing
the latch 230). For the coarse-grained memory requests, the
data and address configurations are similar to existing multi-
core memory systems. Addresses are issued from indepen-
dent address bus ABUS similar to the timing diagram in FIG.
1A. The peak data bandwidth is close to P.

When the memory chips 250 issues fine-grained requests,
referring to FIG. 1B and 2, D_SEL switches the data multi-
plexer 220 to Dout_aand A_SEL selects Din_b, which directs
the communications between the memory controller 210 and
the memory chips 250 via the latch 230. At a single address
cycle, the latch 230 can receive a total of 32 bits address
information at the four rising the falling edges (double data
rate), which can include 19 bits for the (i+1)-th row selection
and 10 bits for the (i-1)-th column selection. The latch 230
stores the address information and outputs them two clock
cycles later. For the fine-grained memory requests, the
memory access patterns are irregular and distributed.

As shown in FIGS. 1B and 3, both address information and
data in the fine-grained requests are transmitted through the
DA BUS from the memory controller 210 to the data multi-
plexer 220. The target address in the memory chip 250 is
inserted in two address clock cycles (“R” and “C”) before
their respective data clock cycles in the DA BUS. The address
information is extracted by the data multiplexer and stored in
in the latch 230. The address information is sent from the latch
230 to the memory chip 250 via the address de-multiplexer
240 after a delay. Data in the fine-grained requests is also
extracted by the data multiplexer, and transmitted to the
memory chip 250 in data clock cycles after the memory chips
250 are properly addressed by the address information. In this
example shown in FIG. 1B, the peak data bandwidth is lim-
ited to a maximum of 0.67P (4/(3+3)=0.67).

4. The retrieved data is de-composed and returned to cor-
responding processor cores.

The issued requests are still stored in the memory control-
ler 210 in a waiting state. When the data is returned in
response to the bundled find-gained memory accesses, the
memory controller 210 breaks the data according to the origi-
nal requests from different processor cores, and sends data
packets the registers in the corresponding processor cores.
Thus, each request is expected to contain information about
the target memory addresses, operations, and the processor
cores’ identifications, registers identifications, etc.

In some embodiments, a redundant checksum can be
implemented as an Error-Correcting Code (ECC) function for
fine-grained memory accesses in the presently disclosed
method to ensure Quality of Service.
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In some embodiments, a second method discloses a latch-
free peripheral logic circuit to facilitate communication
between memory controller and memory chips. Without a
latch, the peripheral logic circuit does not contain memory
functions. The address information transferred the shared bus
and the pins must strictly follow the timing sequence of the
addresses in the memory chips. Each memory chip requires at
least 16 buses for the address selections of rows and columns.
In one implementation, 16 pins of the processor are grouped
in a pin group, which connects two memory chips, which can
be called up-chip and down-chip.

To make full use of the bandwidth capability, all up-chips
are triggered by the system clock CK and data selection DQS
(Data Quality Service), the address information is latched at
the rising edges; all down-chips function at the counter sys-
tem clock CK# and counter data selection DQS#, the address
information is latched at the falling edges. FIG. 3 shows two
neighboring address cycles, the two rising edges R,,,, C,_;
are respectively used to trigger the (i+1)-th row selection and
the (i-1)-th column selection for the up-chips while the two
falling edges R',,,, C',_, are used to trigger the (i+1)-throw
selection and the (i-1)-th column selection for the down-
chips.

Referring to FIG. 5, alatch-free peripheral logic circuit 500
includes a data multiplexer 520, and an address de-multi-
plexer 540 that controls memory accesses between a memory
controller 510 and one or more memory chip(s) 550 via
mABUS. Unlike the first method, there is no latch in the
peripheral logic circuit 500. In some implementations, every
16 shared pins of the memory controller 510 are grouped and
connected to the data multiplexer 520, and in turn to the
address de-multiplexer 540 and then to the data pins of the
two memory chips 550 (8 for each). In the address cycles, DA
BUS is connected to the address de-multiplexer 540 which is
selected by the A_SEL signal to connect to the memory
chip(s) 550 via mABUS. In the normal data transferring
cycles, DA BUS is selected by the D_SEL signal from the
memory controller 510 to connect to the data pins of the
memory chips 550. Since 19 bits are required for row
addresses and there are only 16 bits in a group, 3 bits are
borrowed from the spare original address bus.

If most of the requests are coarse-grained, the second
method is similar to the first method or existing multi-core
systems. FIG. 4A shows a timing diagram for multiple con-
secutive reads in a conventional peripheral multiplexer circuit
without a latch between a memory controller and a memory
chip, similar to that shown in FIG. 1A. Addresses are issued
from the memory controller 510 to the address de-multiplexer
540 via the independent address bus ABUS and then the
memory chip 550 viamABUS according to timing diagram in
FIG. 4A. The peak data bandwidth is close to P.

Otherwise, if most of the memory-access requests are fine-
grained, the access patterns are irregular and distributed. The
operation procedure is executed according to timing diagram
in FIG. 4B which shows a timing diagram of consecutive
reads with fine granularity in a peripheral multiplexer circuit
without a latch between a memory controller and one or more
memory chips. Three cycles are inserted before every data
transfer burst. In this example shown in FIG. 4B, the peak data
bandwidth is close to 0.57P (4/(3+4)=0.57).

For fine grained memory access requests, memory access
request having the same target addresses are bundled. Both
address information and data in the fine-grained requests are
transmitted from the memory controller 510 through the DA
BUS to the data multiplexer 520. Similar to the operations
described above in relation to FIGS. 1B and 3, address infor-
mation (i.e. row and column selection signals) are inserted
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before their associated data signals as shown in FIG. 4B. In
addition, an idle cycle is inserted between the address clock
cycles (“R” and “C” in FIG. 4B) and read and write operations
in the data clock cycles because the timing for the write
command is a little ahead of the read timing in the memory
chip(s). Regardless whether it is a read or a write operation,
the additional idle cycles assure that the up chip and the down
chip are synchronized, and the addresses are issued strictly
according to the chronicle sequence of the addresses in the
memory chip(s). In some implementations, the memory
chip(s) require a minimum of 5 clock cycles between selec-
tion and associated data transfer. In the second method, the
address selections and the idle cycles increase the minimum
number of cycles per data transfer to 8. The timing of the
addressing and data operations shown in FIG. 4B are con-
trolled by D_SEL and A_SEL control signals from the
memory controller 510. In the address clock cycles, D_SEL
directs address information from Dout_a of the data multi-
plexer 520 to the address de-multiplexer 540. The address
information (e.g. column and row numbers) is then sent to the
memory chip 550 via mABUS under the control of A_SEL
signal. One or more idle cycles are inserted. In the data clock
cycles, D_SEL switches the data multiplexer 520 to Dout_b
for read and write operations in the bundled memory access
requests in communications with the memory chip 550.

The focuses of the above described methods are to provide
solutions for coarse-grained and find-grained memory-access
requests. For memory-access requests of moderate granulari-
ties (e.g. data width from 8 bytes to 32 bytes), the requests are
broken down to fine-grained ones, which is simple to imple-
ment logically but also has the drawback of sending redun-
dant addresses.

In some embodiments, referring to FIG. 7, in a third
method, a peripheral logic circuit 700 includes a data multi-
plexer 720, and a memory manager 740 for controlling
memory accesses between a memory controller 710 and one
or more memory chip(s) 750. The memory manager 740
performs the functions of buffering, recording, and issuing
commands according to timing constraints. A unified address
bus is no longer required and all addresses are issued through
the DA BUS. All lines (e.g. 64 lines) of DA BUS are con-
nected to the data multiplexer 720. The data multiplexer 720
can direct the data or address information respectively to
output Dout_a or Dout_b in response to the control signal
D_SEL issued by the memory controller 710. Dout_a is con-
nected to the address input of the memory manager 740.
Dout_bis connected to the data pins of the memory chips 750.
The output of the memory manager 740 is connected to the
address pins of the memory chips 750.

Memory-access requests of different data widths are
queued up with each memory chip associated with a queue. A
memory-access request can specify information about
memory address, data width, and a write/read operation.

The Greedy algorithm is used to optimize compact
memory accesses locally in order to achieve global optimum.
Referring to FIGS. 6 and 7, the memory controller 710 iden-
tifies the first memory-access requests to the memory chips
750 in their respective queues, and aggregates them into the
widest-possible bundled requests. If two memory-access
requests include an overlap portion, the latter portion is sepa-
rated and kept in the queue. In FIG. 6, each memory chip 0-7
is associated with a queue as indicated by a horizontal dashed
line. The vertical lines running across different queues repre-
sent bundled requests. For example, the first vertical line on
the upper left aggregates memory-access requests in the three
queues associated with memory chips 0, 1, 2. The memory-
access requests illustrated are of a medium granularity (i.e.
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the bundling is not across all memory chips or limited to a
single memory chip). Each bundle of memory accesses needs
to be issued with only one group of memory addresses in the
memory chip. The number of memory addresses is equal to
the number of request bundles (not the number of memory-
access requests).

Because the memory manager 740 includes buffer func-
tion, bundled memory-access requests can be issued in con-
secutive address cycles by the memory controller 710 through
the DA BUS to the memory manager 740. At address cycles,
D_EL switches the data multiplexer 720 to Dout_a. A batchof
addresses are transmitted together and buffered in the
memory manager 740. After address transfer, the memory
manager 740 issues the addresses to the memory chips 750
strictly according to timing constraints. D_SEL then switches
the data multiplexer 720 to Dout_b for data transfers to and
from the memory chips 750. For memory access requests of
moderate granularities, the memory manager 740 issues the
same memory address simultaneously to all associated
memory chips 750 in each bundled memory request. With
such a batch operation, data transfer cycles are not interrupted
by the address cycles. Afterwards, the read and write data
operations are also conducted in parallel (simultaneously) to
and from the relevant memory chips 750 via the data multi-
plexer 720.

For a complete memory-access request, the memory con-
troller 710 returns the acquired data to the appropriate pro-
cessor cores that requested them. For the segmented memory-
access requests, the memory controller 710 bufters different
portions and recombines the data before the data is returned to
the corresponding processor core.

As a variant to the above described lock-step modes in the
third method, a mixed-cycle mode can include part of the DA
BUS designated for data transferring while the rest of the DA
BUS used for issuing addresses to the memory manager.

The bandwidth utilization of the third method is at least as
good as the first and the second methods regardless it is in a
coarse-grained mode or a fine-grained mode, while when
there are memory-access requests with moderate granulari-
ties, its utilization could be slightly better than the above
embodiments because of a reduce in address information
issued from the processor.

Only a few examples and implementations are described.
Other implementations, variations, modifications and
enhancements to the described examples and implementa-
tions may be made without deviating from the spirit of the
present invention. For example, the disclosed system, meth-
ods, applications, and user interfaces can be implemented
using hardware or software other than the examples described
above.

While this document contains many specifics, these should
not be construed as limitations on the scope of an invention
that is claimed or of what may be claimed, but rather as
descriptions of features specific to particular embodiments.
Certain features that are described in this document in the
context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various
features that are described in the context of a single embodi-
ment can also be implemented in multiple embodiments sepa-
rately or in any suitable sub-combination. Moreover,
although features may be described above as acting in certain
combinations and even initially claimed as such, one or more
features from a claimed combination can in some cases be
excised from the combination, and the claimed combination
may be directed to a sub-combination or a variation of a
sub-combination.
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It will thus be seen that the objects of the present invention
have been fully and effectively accomplished. Its embodi-
ments have been shown and described for the purpose of
illustrating the functional and structural principles of the
present invention and is subject to change without departure
from such principles. Therefore, this invention includes all
modifications encompassed within the spirit and scope of the
following claims.

What is claimed is:

1. A method of providing memory accesses for a multi-core
processor, comprising:

reserving a group of pins of a multi-core processor to

transmit either data or address information in commu-
nication with one or more memory chips, wherein the
multi-core processor comprises a plurality of processor
cores;

receiving memory access requests from the plurality of

processor cores;
determining granularity of the memory access requests by
a memory controller;

dynamically adjusting, by the memory controller, a num-
ber of pins in the group of pins to be used to transmit
address information based with the granularity of the
memory access requests,

forming queues of memory access requests each associated

with accessing data in one of the memory chips;
bundling memory access requests in different queues that
share same target addresses in two or more memory
chips, which produces bundled memory access requests;
simultaneously transmitting the memory addresses to the
two or more memory chips associated with the bundled
memory access requests; and
after the step of simultaneously transmitting the memory
addresses, simultaneously transmitting data in the
bundled memory access requests to the respective
memory chips at the memory address.

2. The method of claim 1, wherein the step of adjusting
comprises:

decreasing the number of pins in the group of pins to be

used to transmit address information by the memory
controller when the granularity of the memory access
requests increases.

3. The method of claim 1, wherein the memory access
requests are characterized as coarse-grained memory access
requests if the memory access requests have data width equal
or more than a predetermined data width, wherein the step of
adjusting comprises minimizing the number of pins in the
group of pins to be used to transmit address information by
the memory controller.

4. The method of claim 3, wherein the predetermined data
width is 32 bytes.

5. The method of claim 1, wherein the step of adjusting
comprises:

increasing the number of pins in the group of pins to be

used to transmit address information by the memory
controller when the granularity of the memory access
requests decreases.

6. The method of claim 1, wherein the memory access
requests are characterized as fine-grained memory access
requests if the memory access requests have data width equal
ornarrower than a predetermined data width, wherein the step
of'adjusting comprises maximizing the number of pins in the
group of pins to be used to transmit address information by
the memory controller.

7. The method of claim 6, wherein the predetermined data
width is 8 bytes.
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8. The method of claim 6, further comprising:

bundling a plurality of fine-grained memory access
requests having a same target memory address to form
bundled fine-grained memory access requests;

transmitting the target memory address via a set of pins in
the group of pins in one or more address clock cycles;
and

after the step of transmitting the target memory address,

transmitting data in the plurality of fine-grained memory
access requests via the same set of pins in one or more
data clock cycles following the one or more address
clock cycles.

9. The method of claim 8, further comprising:

transmitting the target memory address in the one or more

address clock cycles from the memory controller to a
data multiplexer;

controlling the data multiplexer by the memory controller

to direct the target memory address to store in a latch;
transmitting the target memory address from the latch to an
address de-multiplexer;

transmitting the target memory address from the address

de-multiplexer to address input in the one or more
memory chips;

transmitting data in the fine-grained memory access

requests to the data multiplexer; and

controlling the data multiplexer by the memory controller

to direct the data in the fine-grained memory access
requests to the memory chips following the one or more
address clock cycles.

10. The method of claim 9, wherein the target memory
address is transmitted to the address input in the one or more
memory chips one or more clock cycles after the target
memory address is transmitted from the data de-multiplexer
to the memory chips.

11. The method of claim 8, further comprising:

transmitting the target memory address in the one or more

address clock cycles from the memory controller to a
data multiplexer;

controlling the data multiplexer by the memory controller

to direct the target memory address to an address de-
multiplexer;

transmitting the target memory address from the address

de-multiplexer to address input in the one or more
memory chips;

inserting one or more idle cycles after the one or more

address clock cycles;

transmitting data in the fine-grained memory access

requests to the data multiplexer; and

controlling the data multiplexer by the memory controller

to direct the data in the fine-grained memory access
requests to the memory chips following the one or more
idle clock cycles.

12. The method of claim 1, wherein the one or more
memory chips are outside of the multi-core processor.

13. A method of providing memory accesses for a multi-
core processor, comprising:

reserving a group of pins of a multi-core processor to

transmit either data or address information in commu-
nication with one or more memory chips, wherein the
multi-core processor comprises a plurality of processor
cores;

receiving memory access requests from the plurality of

processor cores;

determining granularity of the memory access requests by

a memory controller; and

dynamically adjusting, by the memory controller, a num-

ber of pins in the group of pins to be used to transmit
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address information based with the granularity of the
memory access requests, wherein the step of dynami-
cally adjusting comprises:
decreasing the number of pins in the group of pins to be
used to transmit address information by the memory
controller when the granularity of the memory access
requests increases;
increasing the number of pins in the group of pins to be
used to transmit address information by the memory
controller when the granularity of the memory access
requests decreases,
forming queues of memory access requests each associated
with accessing data in one of the memory chips;
bundling memory access requests in different queues that
share same target addresses in two or more memory
chips, which produces bundled memory access requests;
simultaneously transmitting the memory addresses to the
two or more memory chips associated with the bundled
memory access requests; and
after the step of simultaneously transmitting the memory
addresses, simultaneously transmitting data in the
bundled memory access requests to the respective
memory chips at the memory address.
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